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ABSTRACT: Climate predictability at seasonal to interannual time scales is mainly associated with sea surface tempera-
ture anomalies (SSTAs). How to quantitatively assess the impact of SSTAs on climate variability and predictability is an
unresolved topic. Using a novel metric [bulk connectivity (BC)], the integrated influences of global SSTAs on precipitation
anomalies over land are examined in observations and compared with Atmospheric Model Intercomparison Project
(AMIP) simulations in 1957–2018. The hotspots of the land precipitation variation affected by global SSTA are identified,
and the seasonality is evaluated. Such hotspots indicate the regions of land precipitation predictability caused by SSTAs.
The hotspots are observed in the Sahel region in September–March, in the Indochina Peninsula in April and May, and in
southwestern United States in December–March, which are mostly linked to the influence of El Niño–Southern Oscillation
(ENSO). The overall impact of SSTAs on land precipitation is larger in the Southern Hemisphere than in the Northern
Hemisphere. The spatial variations of BC and hotspots in the observations are partially reproduced in the AMIP simula-
tions. However, an individual run in the AMIP simulations underestimates the integrated influence of global SSTA on
land precipitation anomalies, while the ensemble mean amplifies the integrated influence, and both show a challenge in
capturing the seasonality of the SST influence, particularly the time of the strongest impact. The results of the BC metric
can serve as a benchmark to evaluate climate models and to identify the predictability sources.
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1. Introduction

Climate anomalies and associated environmental hazards
may cause serious social and economic crises, especially for
some extreme events, such as severe droughts, floods, heat-
waves, and wildfires. Due to the expansion of human activity
and the growth of economics, the damage of these disasters
may increase over time. For instance, in the United States,
the number of weather- and climate-related disasters exceed-
ing one billion dollars has increased since 1980. From 1980 to
2020, the average number of billion-dollar events was 7.1 per
year, whereas it increased to 16.2 per year for 2016–20, includ-
ing the consumer price index adjustments (https://www.
globalchange.gov/browse/indicators/billion-dollar-disasters). Thus,
understanding and predicting climate variability have been of
vital importance both for economic growth and the safety of
society.

From the predictability perspective, climate anomalies at
seasonal to interannual time scales consist of unpredictable
and predictable components (e.g., Kumar et al. 2001; Scaife
and Smith 2018). The unpredictable component is mostly
driven by the atmospheric internal dynamics, which mainly re-
lies on initial conditions in a dynamical prediction system.
Thus, it is largely unable to be predicted beyond 2–3 weeks
and is referred to as “weather noise” in climate prediction of

seasonal to interannual time scales. The predictable compo-
nent at seasonal to interannual time scales is mainly forced by
boundary forcing, particularly sea surface temperature (SST)
(National Research Council 2010; He et al. 2016; Liang et al.
2019; Hu et al. 2020). That is the major basis for climate
prediction operation at seasonal to interannual time scales in
various climate centers (O’Lenic et al. 2008; Peng et al. 2012,
2013).

The mechanisms of the predictable component of climate
variability vary by region. In the tropics, it is mainly and di-
rectly affected by zonally overturning atmospheric circulation
linked to the atmosphere and ocean coupling, such as the
Walker circulation associated with El Niño–Southern Oscilla-
tion (ENSO). For example, precipitation anomalies in north-
eastern Brazil are modulated by a shift of the Walker
circulation (e.g., Kayano et al. 1988). Similarly, a longitudinal
displacement and strength variation of the Walker circulation
associated with ENSO modulate Indian summer monsoon
variability (e.g., Ju and Slingo 1995). ENSO affects southern
African rainfall variability by suppressing or enhancing the
tropical convection over the subcontinent (e.g., Mason 2001).

The impact of SST anomalies (SSTAs) on the extratropical
climate variability is more complicated and indirectly com-
pared with the impact on the tropics. It is mainly through vari-
ous teleconnections associated with tropical forcing (Bjerknes
1969; Wallace and Gutzler 1981; Ting and Sardeshmukh 1993;
Yulaeva and Wallace 1994; Alexander et al. 2009; Stan et al.Corresponding author: X. Li, xiaofanli@zju.edu
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2017; Yeh et al. 2018). For example, by generating a Pacific–
North American (PNA)-like teleconnection pattern that al-
ters the meridional location of the midlatitude jet stream,
ENSO affects North American climate anomalies (Leathers
et al. 1991; Li et al. 2019). In East Asia, the impact of ENSO
is ultimately through altering the subtropical high in the west-
ern North Pacific. The Rossby-wave response to the diabatic
heating associated with ENSO (e.g., Wang et al. 2000; Wu
et al. 2003), the Pacific–Japan (PJ) pattern forced by the con-
vective activities in the western tropical Pacific (e.g., Nitta
1987; Nitta and Hu 1996), and the Indo-western Pacific Ocean
capacitor effect (Xie et al. 2016) are three of the potential
mechanisms for the impact of ENSO on East Asian climate
variability.

These teleconnections are the major contributors to the in-
herent climate predictability. It is expected that the prediction
skill of extratropical climate variability in a climate model is
linked to the ability of the model to reproduce the various tel-
econnections forced by SSTA. Nevertheless, it is a partially
unresolved topic on how to quantitatively measure the ability
of a model to reproduce the teleconnections. Through verify-
ing the ability of a model to reproduce the integrated connec-
tions, we can identify the model’s defects and find potential
ways to improve the model and enhance its prediction skill.
Although monthly mean precipitation over land is one of the
most important climate variables of societal relevance, its pre-
diction skill is quite low in operation (Peng et al. 2012, 2013).
Thus, it is meaningful to choose monthly mean precipitation
as the variable to examine its connection with SSTAs at sea-
sonal to interannual time scales in observations and to iden-
tify the hotspots of land precipitation variability that are
affected by SSTAs. Moreover, through comparing with the
observations, the model’s ability to capture the integrated
connections is verified.

Recently, Hu et al. (2020) proposed a new metric to mea-
sure the bulk connectivity (BC) between two variables. With
the BC metric, they identified the key regions of SSTA in
forcing global land precipitation variability in all months as a
whole in observations. Later, Li et al. (2022) used the metric
to further identify the regions of SSTA having the most signif-
icant connections with global land precipitation anomaly and
the seasonality. They confirmed that SSTAs in the tropical
central and eastern Pacific associated with ENSO have the
strongest influence on the global land precipitation anomaly,
while SSTAs in the tropical Indian and Atlantic Oceans play
a secondary role. Seasonally, the impact is the strongest in
October and the weakest in June. Compared with the observa-
tional results, in addition to the biases in capturing the seasonal-
ity of the impact, a set of Atmospheric Model Intercomparison
Project (AMIP) simulations amplified the strength of the impact
in the ensemble mean, and underestimated it in an individual
member of the AMIP simulations.

As a complement and extension of Hu et al. (2020) and Li
et al. (2022), instead of identifying the key SST regions affecting
global land precipitation variability in observations and AMIP
simulations and the seasonality, in this work, using similar data
and approaches, we examine the integrated influence of global
SSTA as a whole on the variability of land precipitation at

seasonal to interannual time scales and identify the hotspots of
the land precipitation significantly affected by global SSTA as
well as the seasonality. Such hotspots of land precipitation im-
ply predictability regions due to the SST influence through vari-
ous teleconnections. That provides a physical basis for climate
prediction. Moreover, through comparison with AMIP simula-
tions, we illustrate the fidelity and defects of a climate model in
reproducing the land precipitation variability and the seasonal-
ity caused by SST forcing. Thus, although similar data and ap-
proaches are adopted, the objectives are different between this
work and Li et al. (2022). Specifically, in this work, we focus on
the following questions: 1) In which regions of land precipita-
tion anomalies have significant connections with global SSTA
as a whole? In other words, where are the hotspots of land pre-
cipitations that are significantly affected by SSTA in observa-
tions? 2) What are the latitudinal variation and seasonal
evolution of the connection? 3) How well can the AMIP simu-
lation capture the observed spatial variations of the connection
and the seasonality from an individual member and ensemble
mean perspective?

Such assessment in the present work can set up a bench-
mark validating a climate model in capturing the bulk connec-
tion between SSTA and land precipitation variation and
identifying the predictability sources of regional precipitation
over land. Meanwhile, the differences between the observa-
tions and model simulations link to model defects and may
imply a potential for model improvement in capturing the im-
pact of SSTAs on land precipitation variability. The paper is
organized as the follows. Section 2 introduces the data and
methods used in this work; sections 3 and 4 show the results
of the observations and AMIP simulations, respectively.
Section 5 displays the hemispheric averages and seasonality.
Section 6 summarizes the results with some discussion.

2. Data and methods

The observation-based monthly mean SSTs used in this
work are the Met Office Hadley Centre’s sea ice and SST ver-
sion 2 (HadISSTv2) with a 18 3 18 resolution (Rayner et al.
2006). The SST dataset is an analysis combining in situ sea
surface observations and satellite-derived estimates with bias
correlations of the bucket observations. The monthly mean
reconstructed precipitation analysis from January 1948 to
December 2018 on a 18 3 18 spatial resolution (PRECP; Chen
et al. 2002) is examined. PRECP was developed by the opti-
mal interpolation of gauge observations over land only. As a
robustness check, the monthly mean precipitation analysis
over land from version 4.03 of the monthly high-resolution
gridded dataset of the Climatic Research Unit (CRU) with a
0.58 3 0.58 resolution is also examined. The CRU data are
derived from the interpolation of monthly anomalies from
extensive networks of weather station observations by using
angular-distance weighting (Harris et al. 2020). The precipita-
tion data are interpolated into a 18 3 18 resolution in the
calculations.

To assess the response of land precipitation to SST, the
AMIP simulations are analyzed. The AMIP simulations are
from the Global Forecast System (GFS), which is forced by
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observed time-varying global monthly mean SSTs and sea ice
from HadISST datasets for 1957–2008 (Rayner et al. 2006)
and the Optimum Interpolation SST version 2 (OISSTv2) af-
terward (Reynolds et al. 2002). The simulations consist of
17 ensemble members with slightly different atmospheric ini-
tial conditions and cover the period from January 1957 to
December 2018 (Hu et al. 2020; Li et al. 2022). The GFS is
the atmospheric component of version 2 of the Climate Fore-
cast System (CFSv2; Saha et al. 2014) with a horizontal resolu-
tion of T126 (∼105 km) and 64 vertical levels.

In this work, the common period (January 1957–December
2018) of the observation-based data and the AMIP simula-
tions is analyzed. The anomalies are referred to the monthly
climatology in January 1981–December 2010. To eliminate
the influence of decadal and longer-time variations, as well as
the long-term trend, a 10-yr high-pass filter and detrending
are applied to the data before the following calculations.

Similar to Hu et al. (2020); see their Fig. 5) and Li et al.
(2022), the integrated connection of SSTA with precipitation

variability is measured by bulk connectivity (BC), a quantita-
tive measure of the integrated connection of precipitation
anomaly at a land grid point (Li, Lj) with SSTA at a global
oceanic grid point (Om, On):

BC(Li, Lj) 5
100

N 3 Mw

∑M

Om51

∑N

On51

da(Li ,Lj ;Om,On): (1)

In Eq. (1), da(Li ,Lj ;Om,On) 5 1 if the correlation of precipita-
tion anomaly at grid (Li, Lj) with SSTA at grid (Om, On) ex-
ceeds the statistical significance level a (here, we chose 95%),
and da(Li ,Lj ;Om,On) 5 0 if the correlation is not significant. Here
M and N are the zonal and meridional grid numbers of global
SSTA from 908S to 908N in this work, respectively. The term
Mw 5

∑N
On51W(On) is the latitudinal (area) weighted total

meridional grid number of SST. Thus, BC is defined as the
percentage of accumulated latitudinal weighted grid numbers
for the correlation between land precipitation anomaly at a
grid and global SSTA in each month that reaches a 95%

FIG. 1. Bulk connectivity (BC) in the observations. BC is defined as the percentage of accumulated latitudinal-weighted grid numbers
for the correlation between land precipitation anomaly at a grid and global SSTA in each month that reaches a 95% significance level us-
ing a t test, referred to latitudinal-weighted total grid number of global SSTA during January 1957–December 2018. The significance areas
are displayed in warm color with values equal to or larger than 5.
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significance level using a t test, referred to as the latitudinal-
weighted total grid number of global SSTA. Similar to Li et al.
(2022), through Monte Carlo simulations with SST replaced
by random time series, it is suggested that, statistically, at the
significance level of 95%, land grid points with BC(Li ,Lj) . 5

denote that precipitation anomaly at the grid point may have
a statistically significant connection with SSTA over some re-
gions, while BC(Li ,Lj) , 5 means no significant connection.
This metric can be applied to any two variables in any region
to quantitatively measure their statistical BC, and also to

FIG. 2. As in Fig. 1, but for the zonal average.

FIG. 3. As in Fig. 2, but for SST leading precipitation by 1 month.
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evaluate the ability of a climate model in capturing the ob-
served connections of two variables.

3. Hotspots in the observations and connections
with ENSO

Figure 1 shows the spatial distribution of monthly BC over
the global land with warm colors representing the significance
at the level of 95%. Overall, the values of BC are larger in the
low latitudes than in the high latitudes, which is more evident
in the zonal mean shown in Fig. 2, implying a decrease of the
impact of SST anomaly on land precipitation variations from
low to high latitudes. Geographically, there are some hotspots
with large BC values, such as in the Sahel region, central
Asia, the Indochina Peninsula, tropical South America, south-
western United States, subtropical Africa, and northern
Australia. That means the precipitation anomalies over these
regions may be significantly affected by SSTA and predictable
to some extent.

In addition to the geographical variations, there is a distin-
guished month-to-month change of the BC distribution. In other
words, the hotspots show up in some months and disappear in
other months. For instance, the hotspot in the Sahel region
emerges in September–March and disappears in April–August.
In the Indochina Peninsula, the hotspot only presents in April
and May. In southwestern United States, the hotspot is seen in
December–March. The seasonal and latitudinal variations of the
BC are more visible in the zonal mean shown in Fig. 2. Overall,
in addition to the geographic dependence (Fig. 1), as shown in
the zonal mean of BC (Fig. 2), the BC values have pronounced
seasonality with larger values in the boreal winter and autumn
and smaller values in boreal spring and summer in the Northern

Hemisphere. For the Southern Hemisphere, it is larger in austral
spring and summer than in austral autumn and winter. It should
be indicated that the results shown in Figs. 1 and 2 are similar if
the CRU precipitation data are used in the calculations (not
shown).

To check the lag impact of SST on precipitation (Wang and
Fu 2000; Kumar and Hoerling 2003), we repeat the calcula-
tions with SST leading precipitation by 1 month. It is noted
that both the spatial distribution of BC in each month (not
shown) and the zonal average of the monthly and latitudinal
variations (Fig. 3) are similar to the simultaneous ones
(Figs. 1 and 2), but the overall amplitudes are slightly smaller
in the former (Fig. 3) than in the latter (Figs. 1 and 2). It is
suggested that the collective influence of the SSTA can reach
land precipitation mainly within one month. In the following
analyses, we focus on the simultaneous connectivity between
SST and land precipitation anomalies.

It is expected that most of the hotspots and their seasonal
variations shown in Figs. 1 and 2 may be linked to the influ-
ence of tropical SST, especially ENSO. To verify the impor-
tance of the tropical SST to the land precipitation variation,
we repeat the BC calculations with SST confined in the
tropics (308S–308N). The spatial and monthly variations of the
BC (not shown) are similar to Fig. 1. Such similarity is evident
in the corresponding zonal mean (Figs. 2 and 4). Among the
tropical SSTA, the SSTAs in the central and eastern tropical
Pacific associated with ENSO play the most important role.
By comparing the month-to-month BC (Fig. 1) with the corre-
lations of land precipitation with SSTA indices (such as the
Niño-3.4 index; Fig. 5), we can further identify which hotspots
may be mainly driven or not driven by ENSO. For example,
the hotspots in tropical South America and central Asia in

FIG. 4. As in Fig. 2, but for the SST in the tropics (308S–308N) only.
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January–April and the Indochina Peninsula in April and May
(Fig. 1) seem due to the influence of ENSO (Fig. 5a). Mean-
while, we see that there are a lot of detailed differences be-
tween Figs. 1 and 5. For example, there are large BC values in
Western Australia in July (Fig. 1g), but the correlations with
ENSO are insignificant in the region (Fig. 5c), implying that
the precipitation variation in Western Australia in July may
not be driven by ENSO. That is a potential advantage of BC
that aggregates the impacts of global SSTA, beyond just
ENSO’s impacts, on land precipitation. The comparison is
more straightforward from the monthly and latitudinal varia-
tions of their zonal means (Figs. 2 and 6). The overall patterns
are similar, implying that the monthly BC distributions are
largely determined by the impact of ENSO. In particular, the
large BC values between 08 and 158N during January–April
(Figs. 1 and 2) may be linked to the influence of ENSO on the
precipitation anomalies in both the Horn of Africa and the
Indochina Peninsula, and also in tropical South America in
January and February (Figs. 5 and 6), while large BC values
in the tropical land during July–December (Figs. 1 and 2) may
reflect the collective impact of ENSO on the precipitation
variations in tropical Africa, tropical Asia, the Maritime

Continent, and tropical South America (Figs. 5 and 6). That is
generally consistent with some previous works, such as
Ropelewski and Halpert (1987, 1996).

The impacts of SSTAs in different ocean basins on precipi-
tation variations in different land areas may occur through
different mechanisms (e.g., Alexander et al. 2002; Lau and
Nath 2003). In addition to the direct impact of SSTAs in the
tropical central and eastern Pacific associated with ENSO,
SSTAs in the other ocean basins, such as the Indian and
Atlantic Oceans, may also play an important role in land pre-
cipitation variation in some regions, which have been well
documented (National Research Council 2010). For example,
the large BCs in Western Australia in July (Fig. 1g) may be
driven by Indian Ocean dipole mode, instead of ENSO
(Ashok et al. 2003). Nevertheless, these SSTAs may be par-
tially due to the interbasin lead–lag connections through
atmospheric bridges or/and oceanic tunnels, and/or local
atmosphere–ocean interactions (Wang et al. 2013; Cai et al.
2019; Wang 2019). In other words, considerable fractions of
the SST variabilities in the tropical Indian and Atlantic
Oceans are due to lag impacts of ENSO (Kug and Kang 2006;
Hu et al. 2011; He et al. 2020; Zhang et al. 2021; and

FIG. 5. Simultaneous correlations of observed land precipitation anomalies with the Niño-3.4 index in (a) January,
(b) April, (c) July, and (d) October during 1957–2018. Hatching denotes significant correlations at the significance
level of 95% using a t test.
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references therein). For example, ENSO has its impact on
East Asian summer precipitation through the delayed impact
of SSTA over the tropical Indian Ocean. The ENSO-induced
warm SSTA in the tropical Indian Ocean modulates the East
Asian summer climate by stimulating an anomalous anticy-
clone over the western North Pacific in summer (Xie et al.
2009, 2016).

4. Hotspots in the AMIP simulations

a. Average of individual members

To further access the hotspots and their seasonal variations
identified in the observations (Figs. 1 and 2), the corresponding
results for the AMIP simulations are shown in Figs. 7 and 8.
Through the comparisons between the observations and
model simulations, the influence of SSTA on land precipi-
tation variations can be further validated, which may also
reflect the predictability of land precipitation variability.
On the other hand, the dissimilarity might be due to sam-
pling errors and/or defects in the AMIP simulations, meaning
a potential for improvement. In a single member of the AMIP
simulations, precipitation variability includes both the internal
variability in the model and the response of the model to the
observed SST specified in the AMIP integrations. To mimic
the observations, the BC calculations with the AMIP simula-
tions are done with each of the 17 individual members, and
then their BC average is computed and shown in Figs. 7 and 8.
Here, we call this the 17-member averaged BC.

Overall, the spatial distribution of the 17-member averaged
BC of the AMIP simulations (Fig. 7) is similar to the corre-
sponding observations (Fig. 1)}for instance, the hotspots in
tropical South America in June–September, in central Asia in
June–August, and in southwestern United States in February–
March. However, the hotspots in the observations in the Sahel
region, the Indochina Peninsula, and southwestern United
States are vague in the AMIP simulations (Figs. 1 and 7).
Also, BCs in central Asia in JJA are much weaker in the
AMIP simulations than in the observations. Such differences
are more noticeable in the zonal average (Figs. 2 and 8). The
maximum values of BC present in the tropics during boreal
summer in the AMIP simulations (Fig. 8), whereas they
emerge in the tropics during July–December in the observa-
tions (Fig. 2). The relative maximum in the tropical Northern
Hemisphere during January–April in the observations is quali-
tatively captured in the AMIP simulations (Figs. 2 and 8). It is
reasonable to speculate that the unsuccessful reproductions of
the connections between SST and extratropical land precipita-
tion may be due to the defects in the model in capturing the
land precipitation feature and the influence of SST-forced tele-
connection. For example, in East Asian summer, the mean
precipitation and its variability and connection with ENSO
have pronounced differences in the AMIP simulations com-
pared with the corresponding observations (see Fig. 11 of Liang
et al. 2019).

Although there are many detailed differences, the BC lati-
tudinal distributions with large values confined in the tropics
(Figs. 2 and 8) are overall consistent with that of the signal-to-

FIG. 6. Zonal mean of the absolutely simultaneous correlations of observed land precipitation
anomalies with the Niño-3.4 index in each month during 1957–2018. Dots denote that the abso-
lutely simultaneous correlations are larger than the corresponding absolutely simultaneous cor-
relations of observed land precipitation anomalies with random numbers in each month.
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noise ratio (SNR; Fig. 9). Here, SNR refers to the ratio of the
signal (the standard deviation of the ensemble mean of the
17 members) to the noise (the standard deviation of 17 indi-
vidual members from the ensemble mean) in the AMIP simu-
lations (Hu et al. 2019, 2020). To some extent, that confirms
the fidelity of the BC metric in identifying the connection be-
tween two variables. Nevertheless, there is an appreciable
difference in terms of the seasonality between Figs. 8 and 9.
SNR has a maximum in the tropical SH in May to September,
whereas BC has a maximum in the equatorial region in August
to November. Also, compared with the latitudinal distribution
in Figs. 2 and 8, the large SNR (Fig. 9) is more confined in the
tropical regions, implying the unique feature of each method in
examining the influence of boundary forcing on land precipita-
tion variations. However, instead of identifying the connection
between two variables, SNR-like approaches can be used to es-
timate predictability and average predictability time (Kumar
et al. 2001; DelSole and Tippett 2009).

b. Ensemble mean of 17 members

Corresponding to the BC average for 17 individual members
of the AMIP simulations shown in Figs. 7 and 8, Figs. 10 and 11

are the BC values calculated using the 17-member ensemble
mean of the monthly mean precipitation and SST anomalies.
The differences between the two methods of calculation are
that the former approach (Figs. 7 and 8) is to calculate BC for
each of 17 members first and then do the average of BCs,
whereas the latter (Figs. 10 and 11) is to calculate the ensemble
mean of the 17 members first and then compute the BCs of the
ensemble mean. Compared with the 17-member averaged
results (Figs. 7 and 8), the most profound change is the notice-
able increase of the amplitudes, a consequence of eliminating
the internal variability through the ensemble average.

5. Hemispheric averages and seasonality

The similarities and differences of BCs between the observa-
tions and the AMIP simulations are further examined through
the Northern and Southern Hemisphere (NH and SH) averages
(Fig. 12). First, the hemispheric averaged BC values in all
months are larger than 5 in both the observations and the
AMIP simulations, suggesting that SSTAs do have impacts on
land precipitation anomaly as a whole in each month and each
hemisphere. That implies predictability of land precipitation

FIG. 7. As in Fig. 1, but for the average of BCs of 17 members of the AMIP simulations during January 1957–December 2018.
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variations to some extent. Second, the BC values are overall
larger in the SH than the NH (the blue bars in Figs. 12a,b), sug-
gesting that the integrated influence of SSTAs on land precipi-
tation variations as a whole is larger in the SH than the NH in

both the observations and AMIP simulations. Such hemispheric
differences might occur because the SH has much smaller land
area and a large portion of that land has connections with SST,
while the NH as a whole aggregates regions that have and do

FIG. 8. As in Fig. 7, but for the zonal average.

FIG. 9. Zonal mean of SNR of land precipitation in the AMIP simulations. Here, the signal
refers to as the standard deviation of the ensemble mean of the 17 members, while the noise is
defined as the standard deviation of 17 individual members from the ensemble mean.
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not have connections with SST. Third, the intensity of the im-
pact shows clear seasonality that is more pronounced in the SH
than the NH.

Compared with the observations (the blue bars in Fig. 12),
the BC values are systematically underestimated in the
17-member average of the AMIP simulations in both hemi-
spheres (particularly in the NH) (green bars in Fig. 12).
Meanwhile, compared with the BC values themselves, the un-
certainties (represented by one standard deviation among the
17 members’ BCs, two horizontal green lines around the top
of the green bars in Fig. 12) is relatively smaller, reflecting the
robustness of the BC values of the 17 individual members in
the AMIP simulations. This may be an indication that either
the atmospheric internal variability in an individual run of the
AMIP simulations is larger than the observations and/or the
forced precipitation anomaly over land by the SSTAs is
smaller (Li et al. 2022). Thus, in addition to sampling errors in
the AMIP simulations, the internal variability driven by the
atmospheric dynamical processes may also be an important
factor leading to the differences between the observations and
the BC average of the 17 members in the AMIP simulations
(Figs. 1, 2, 7, and 8).

For the hemispheric average of monthly BC (Fig. 12), the en-
semble mean values are much larger than those from both the
observations and the 17-member averaged BCs of the AMIP
simulations, indicating increases of the SNR. By suppressing the
internal variability in the ensemble mean, the seasonality of
the hemispheric averaged BC is also changed (Fig. 12; Table 1).
In the ensemble mean of 17 members of the AMIP simulations
of the NH (red bars in Fig. 12a), the maximum appears in
February with BC 5 13.6, and the minimum emerges in June
with BC 5 7.5. In the SH (red bars in Fig. 12b), the maximum
appears in January with BC 5 16.4, and the minimum emerges
in June with BC5 10.5. Although the SNR of the integrated in-
fluence of the global SSTA on land precipitation anomaly in
each hemisphere as a whole is enlarged in the ensemble mean,
it still appears to be a challenge for both the individual mem-
bers and their ensemble mean in the AMIP simulations to cap-
ture the observed seasonality of the integrated influence of
global SSTA on land precipitation variations (Table 1). Since
the observed SST is specified in the AMIP simulations, the sea-
sonality biases must be due to the defects in the model. To ex-
amine what causes the seasonality biases, additional sensitivity
experiments are needed that are beyond the scope of this work.

FIG. 10. As in Fig. 7, but for the ensemble mean of 17 members.
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Moreover, there are notable differences in the seasonality
in both the BC amplitudes and the timings with maximum
and minimum BCs between the observations and the
17-member average of the AMIP simulations (Table 1). In
the NH observations (blue bars in Fig. 12a), the impact is
the strongest in October with BC 5 9.3, and the weakest in
June with BC 5 6.5. In other words, the strongest (weakest)
impact of global SSTA on NH land precipitation variation
in the observation occurs in October (June) with land pre-
cipitation variation significantly affected by the SSTA of
about 9.3% (6.5%) ocean area at a 95% significance level.
For the 17-member averages in NH (green bars in Fig. 12a),
the BC value is the largest in February and December with
BC 5 6.3 and the smallest in June with BC 5 5.3. In the SH
observations (blue bars in Fig. 12b), the impact is the stron-
gest in November with BC 5 11.5, and the weakest in March
with BC 5 6.7. That suggests that the strongest (weakest)
impact of global SSTA on SH land precipitation variation
in the observation occurs in November (March) with land
precipitation variation significantly affected by the SSTA
of about 11.5% (6.7%) ocean area at a 95% significance
level. For the 17-member averages in SH (green bars in
Fig. 12b), the BC is the largest in August with BC 5 7.4
and the smallest in April with BC 5 5.9.

Overall, the results suggest that an individual run in the
AMIP simulations underestimates the integrated influence of
global SSTA on land precipitation anomalies, while the
ensemble mean amplifies the integrated influence. In addition
to the impact of biases in the AMIP simulations, including
defects in the model and inaccuracy in the input (SST and
greenhouse gas) forcings, on the results, the integrated influence

of global SSTA on land precipitation anomalies and its seasonal-
ity, particularly the strongest SSTA influence season, is not ac-
curately represented in the model. The difference between
the observations and the ensemble mean of the AMIP simula-
tions may represent the different features of the connection.
In the ensemble mean of the AMIP simulations (Figs. 10 and
11), the precipitation variability reflects almost purely the
response of the atmosphere (precipitation) anomaly to SSTA
due to the suppression of the atmospheric internal dynamics–
driven variability, while the connections in the observations
represent a two-way interaction between the atmosphere and
ocean that includes both the SSTA-forced response and the
internal variability (Wu and Kirtman 2005; Wang et al. 2005;
Zhu and Shukla 2013). It has been noted that the cancellation
of the atmospheric dynamics-driven internal variability is
effective with the increase of ensemble size from 1 to 10 (Hu
et al. 2020). A consequence of the ensemble mean is to sup-
press the SST-unrelated internal variability, thus elevating the
SNR (e.g., Kumar et al. 2001; Scaife and Smith 2018; Hu et al.
2020). Here, we should point out that the BC features in the
tropics and extratropics may be quite different. In other words,
the large-scale circulations connecting SST and tropical land
precipitation may be distinct from the ones for extratropical
land precipitation variations. Thus, the same hemispheric aver-
aged BC value might not represent the same connection be-
tween SST and land precipitation.

6. Summary and discussion

Climate predictability at seasonal to interannual time scales
is largely associated with SSTAs. How to quantitatively assess

FIG. 11. As in Fig. 10, but for the zonal average.
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the impact of SSTA on climate variability and predictability is
an unresolved topic. Using the novel approach of the bulk
connectivity (BC) metric, the integrated influences of the
global SSTA as a whole on the precipitation anomalies over
land are assessed using observations and AMIP simulations
for 1957–2018. In the analyses, we identify the hotspots of the
land precipitation variability affected by global SST and the
seasonality. Such hotspot analysis provides a base for under-
standing the precipitation predictability. Moreover, through
comparison with the results from the observation, the ability

of an individual member and the ensemble mean of the
AMIP simulations to reproduce the influence and hotspots is
evaluated.

In the observations, as expected, the values of BC de-
crease with the latitudinal increase, implying a decrease in
the impact of SSTA on the predictability of land precipita-
tion variations from low to high latitudes. There are land
hotspots of the influence of SSTA in the global ocean as a
whole on land precipitation variability, which vary with sea-
son. For instance, hotspots with large BC values occur in the

FIG. 12. (a) Northern Hemispheric (08–608N) and (b) Southern Hemispheric (08–608S) aver-
aged BCs of the observations (blue bars; Fig. 1), the mean of 17 members of the AMIP simula-
tions (green bars; Fig. 7), and the ensemble mean of 17 members of the AMIP simulations (red
bars; Fig. 10). The green horizontal error bars represent one standard deviation of the BC uncer-
tainty of the 17 individual members. The horizontal dashed line is referred to as a 95% signifi-
cance level of a t test.
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Sahel region in September–March, in the Indochina Peninsula
in April and May, and in the southwestern United States in
December–March, suggesting the precipitation anomalies
over these regions and months may be significantly affected
by SSTA, in particular by the tropical Pacific SSTA associated
with ENSO. Specifically, the large BC values between 08 and
158N during January–April may be linked to the influence of
ENSO on the precipitation anomalies in the Sahel region and
the Indochina Peninsula, and large BC values in the tropics
during July–December may reflect the collective impact of
ENSO on the precipitation variations in the Sahel region, tropi-
cal Asia, the Maritime Continent, and tropical South America.

The influence of SSTA on land precipitation variations
shows strong seasonality and varies with hemisphere. At the
significance level of 95%, in the observations, the impact is
the strongest in October with BC 5 9.3, and the weakest in
June with BC5 6.5 in NH, meaning that land precipitation var-
iation is significantly affected by the SSTA of about 9.3%
(6.5%) ocean area in October (June) in the NH. In the SH, the
impact is the strongest in November with BC 5 11.5, and the
weakest in March with BC 5 6.7, implying that land precipita-
tion variation is significantly affected by the SSTA of about
11.5% (6.7%) ocean area in November (March) in the SH. The
overall influence of SSTA on land precipitation variations is
larger in the SH than the NH.

The spatial variations of BC and hotspots in the observations
are partially reproduced in the AMIP simulations. An individ-
ual run in the AMIP simulations underestimates the integrated
influence of global SSTA on land precipitation anomalies as a
whole, while the ensemble mean amplifies the integrated influ-
ence. Nevertheless, although the signal-to-noise ratio increases
noticeably in the ensemble mean of the AMIP simulations, it is
still a challenge to reproduce the seasonality of the integrated
influence of the global SSTA on land precipitation anomaly as
a whole in either an individual member or multimember ensem-
ble mean of the AMIP simulations, particularly the time of the
strongest influence of the global SSTA on land precipitation
anomalies. In fact, directly comparing BC from the ensemble
mean with the observation is unfair. A more reasonable and
idealized comparison is to use 17 observational/analyzed data-
sets from different sources (to mimic the ensemble simulations)
to calculate the ensemble mean BC, and then compare it with
the ensemble mean BC from the AMIP simulations.

In addition to the impact of biases in the AMIP simulations,
the differences between the observations and the AMIP

simulations may reflect different features for the generation
of the atmospheric (precipitation) variability. In the observa-
tions, there is a two-way interaction between the atmosphere
and ocean, while the atmospheric variability in the AMIP sim-
ulations includes both the atmospheric response to SSTA and
internal variability driven by the internal dynamics. Such two-
way interaction plays an important role in climate variability
in some regions, such as the western North Pacific (Wu and
Kirtman 2005; Wang et al. 2005; Zhu and Shukla 2013). It is
unquestionable that the results from the AMIP simulations
may be model dependent; thus, it is necessary to verify the re-
sults with the metric used in this work by analyzing AMIP
simulations from other models or by examining fully coupled
model results and to identify the impact of model biases on
the results (Jha et al. 2014; Yuan et al. 2018; Wang et al. 2019;
He et al. 2022).

It should be pointed out that in this work we focus on global
SST; in other words, the calculation of BC aggregates the in-
formation over the entire ocean regardless of the basins. This
might obscure some useful predictable signals. For example, if
there is only a small fraction of the ocean that is beneficial for
the prediction of certain regions’ monthly precipitation, aver-
aging over the global ocean will dilute the predictable signals.
With that being said, the results based on BC will always iden-
tify the land precipitation associated with the largest-scale SST
variability. Nevertheless, instead of global SST and global land
precipitation, we can repeat the calculation with precipitation
in a specified region and SST in a specified domain to examine
if there are any significant connections between the precipita-
tion in the region and SST in the domain. The BC metric used
in this work can be treated as a survey-like examination to dis-
play the broad/bulk influence of global or tropical SST on
global land precipitation. For a climate model, capturing such
broad/bulk influence must be one of the preconditions for suc-
cessful prediction of global land precipitation variation. Last,
global warming trends and interdecadal variations may affect
the influence of SST on land precipitation in the real world.
For example, Jia et al. (2015) noted that the global warming
signal and interdecadal variations are linked to a predictable
pattern of seasonal forecasts of surface air temperature.
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